EV Powertrain Trends - Now and in the Future

Dr. Milan ROSINA, Principal Analyst, Power Electronics & Battery
Yole Intelligence
Outline

• Overview of the complexity and design choices in EV powertrain
• How to satisfy electric vehicle user needs?
• Analysis of different approaches and their impact on power electronic components:
 – Battery vs SiC
 – 800V battery
 – Single motor vs dual motor approach
 – EV system integration
• Conclusion

The term “EV” means here a battery-powered full electric vehicle.
EV = a business opportunity to not miss

There is a strong business potential in electric vehicles, for automotive OEMs, Tier1s, component manufacturers and suppliers of various materials.

But how to take part of this rapidly growing business?

The term “EV” means here a battery-powered full electric vehicle.

<table>
<thead>
<tr>
<th>Year</th>
<th>MHEV</th>
<th>HEV</th>
<th>PHEV</th>
<th>BEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>2023</td>
<td>15</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>2024</td>
<td>20</td>
<td>40</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>2025</td>
<td>25</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2026</td>
<td>30</td>
<td>60</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>2027</td>
<td>35</td>
<td>70</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>2028</td>
<td>40</td>
<td>80</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>2029</td>
<td>45</td>
<td>90</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>2030</td>
<td>50</td>
<td>100</td>
<td>55</td>
<td>45</td>
</tr>
</tbody>
</table>

Source: Yole Intelligence

EV:
- Rapidly growing and sustainable market
- High power per vehicle
- High count of power electronic components per vehicle
- Strong needs for innovations
How to choose the right EV design?

Any strategic decision concerning EV design and system/component choice is a very difficult task due to a very complex and rapidly changing environment.

- What is my starting point?
- How difficult to develop?
- Do I have right partners & suppliers?
- Time to develop?
- How to accelerate the development?
- Will end users buy my car? What is the car’s perceived value for them? What is the positioning of my competitors?
- Direct focus on full EV? Or disperse efforts by working on different electrification types?
- Where to put most effort & money?
- Any raw material issues?
- Rapidly changing and region-dependent subsidies and incentive mechanisms
- How big is the risk? Force innovation through quickly or move progressively?

MHEV HEV PHEV BEV FCEV

Li Co Nd Ni
How to reach more EV customers?

However, today’s customers request a certain performance and comfort level.

Automotive OEMs need to increase the sales to get price advantage due to volume scaling and thus to increase the sales...

... and do not forget about the margins...
How to satisfy electric vehicle user needs?

High purchasing price is obviously one of them.
But three of the four main issues that dissuade customers from buying a full-electric vehicle are directly associated with electric vehicle charging:

EV charging-related issues

- **Range anxiety**: Can I drive far enough between recharges?
- **Charge anxiety**: Can I charge my car rapidly?
- **Waiting anxiety**: Can I rapidly access a charging point?

Higher car price compared to an ICE car

Why should I pay more for an electric car?

ICE EV

$ $$$$
EV & EV charging

EV charging infrastructure deployment must go hand-in-hand with EV deployment.

One market drives each other
How to satisfy electric vehicle user needs?

Main focus

EV charging-related issues

- **Range anxiety**
 - Can I drive far enough between recharges?

- **Charge anxiety**
 - Can I charge my car rapidly?

- **Waiting anxiety**
 - Can I rapidly access a charging point?

Higher car price compared to an ICE car

- Why should I pay more for an electric car?

ICE vs **EV**

$ $ $ $ vs $ $ $ $
Adding more energy is not a solution

In the last years, the average battery capacity per vehicle has been continuously increased. But a larger battery means:

- Higher vehicle price
- Higher weight
- Higher volume
- Poorer car driving behavior
- Higher energy consumption (kWh/100km) → negative impact on car driving range!
- Longer charging time → charge anxiety
- Higher dependence on raw materials
- Higher CO₂ emissions and global environmental impact

Considering just adding battery cells, not using advanced cells with higher energy density
It’s time to reduce the losses!

The reduction of losses from battery to wheels has many advantages:

- 🌟 Lower weight
- 🌟 Smaller volume
- 🌟 Greater car driving behavior
- 🌟 Shorter charging time (min/100 km)
- 🌟 Lower energy consumption (kWh/100km) → reduced environmental impact
- 🌟 Lower dependence on raw materials
Battery as a charging speed bottleneck

To do list:
- Enhance cell chemistry
- Enhance cell design and format
- Enhance BMS
- Enhance battery thermal management
- 400V batteries → 800V batteries
- High-power interconnections

Useable battery energy capacity and maximal DC charging power for various passenger vehicle models, as of Q4/2022.
Source: Yole Intelligence

400V → 800V
650V → 1.2 kV

Vehicles with fast charging capability, mainly represented by Tesla vehicles and vehicles based on 800V batteries
SiC - key technology for EVs

- Strong focus on SiC power module and SiC traction inverter development
- HUGE increase of SiC wafer and device manufacturing capacities
- Numerous partnerships between SiC wafer/device suppliers and automotive OEMs
- But
 - Cost SiC-MOSFET vs Si-IGBT
 - SiC die area vs manufacturing yield
 - What about GaN?
Limitations of a single motor approach

Torque – speed motor curve

Optimally one should use a given motor in torque/speed area with the highest efficiency.

But what to do when different torque speed values are needed?

Torque-speed curve and efficiency values for an EV electric motor (illustrative image and values only)
Advantages of a dual motor approach

Two (smaller) motors are easier to be integrated in the vehicle compared to one (big) motor and the weight of motors is more equally distributed across the vehicle.

In the case of two motors, each motor can be mainly used in the speed/torque range where its efficiency is maximal. Two motors will have different power/torque capability and may be based on different motor technologies.

Examples of technology flexibility choice when using 2 motors per vehicle

<table>
<thead>
<tr>
<th>M1</th>
<th>Motor technology</th>
<th>Motor power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si-IGBT/SiC-MOSFET in traction inverter</td>
<td>Si-IGBT/SiC-MOSFET in traction inverter</td>
<td></td>
</tr>
</tbody>
</table>

Hyundai’s Genesis EV based on 800V E-GMP platform:
- 180kW rear axle motor
- Silicon-IGBT-based front inverter
- IGBT power module
- SiC-MOSFET-based inverter
- SiC power module

Image courtesy: Tesla

IS06.2: Milan ROSINA, Yole Intelligence
Integration choices in EVs

There are different options for integration. Trade-offs are needed including factors, such as compactness, performance, cost-saving, serviceability, supply chain management, flexibility, etc.
Consumer electronic players entering the EV business

<table>
<thead>
<tr>
<th>Mechanics/hardware/sales</th>
<th>Electronics/software/service</th>
</tr>
</thead>
</table>

Xiaomi aims to be an EV OEM

2021/03, Xiaomi announced its Auto BU

‘Fight for Xiaomi Auto’ says the slogan

2021/03, Auto BU founded

Beijing plant, 300k capacity

1st BEV SOP

Huawei chooses to be a supplier to multiple key systems, with close cooperation with selected OEMs.

Aito: a new brand by Sokon and Huawei, with full solutions, plus Huawei dominates vehicle design and sales through Huawei stores.

HI (Huawei Intelligent): full ADAS solutions

Conventional supplier: hardware, such as LiDARs, AR-HUD, integrated e-axles, etc.
Conclusion

• EV is rapidly growing market and sustainable market.
• To sell more EV, their price has to be reduced.
• EV optimization has to be done with EV charging in mind.
• Many innovations and improvements on multiple vehicle systems are needed.
• Integration brings advantages in costs, volume, weight. It strengthens OEM’s position within the automotive supply chain.
FIELDS OF EXPERTISE COVERING THE SEMICONDUCTOR INDUSTRY

• Semiconductor Packaging
• Semiconductor Manufacturing
• Semiconductor Equipment
• Memory
• Computing and Software

• Photonics & Lighting
• Imaging
• Sensing & Actuating
• Display

• Radio Frequency
• Compound Semiconductors
• Power Electronics
• Batteries

• Electronic Systems
• Emerging Technologies
A COMPLETE SET OF PRODUCTS & SERVICES TO ANSWER YOUR NEEDS

REPORTS
- **Insight**
 - Yearly published reports
 - Market, technology and strategy analysis
 - Reverse costing and reverse engineering
 - Performance analysis
- **Format**
 - PDF files with analyses
 - Excel files with graphics and data
 - Web access
- **Topics**
 - Photonics, Imaging & Sensing
 - Lighting & Displays
 - Power Electronics & Battery
 - Compound Semiconductors
 - Semiconductor Manufacturing and Packaging
 - Computing & Memory
- **115+ reports per year**

MONITORS
- **Insight**
 - 4 times per year updated market data and technology trends in units, value at wafer level
 - Direct access to the analyst
- **Format**
 - Excel files with data
 - PDF files with analyses graphs and key facts
 - Web access
- **Topics**
 - Advanced Packaging
 - Photonics GaAs/InP
 - RF GAN
 - Power SiC/GAN
 - DRAM & NAND
 - Micro-controller
 - Processor
 - Semiconductor Test
 - Semiconductor Subsystems
 - Wafer Fab Equipment
- **12 different monitors quarterly updated**

TRACKS
- **Insight**
 - Teardowns of phones, smart home, wearables and automotive modules and systems
 - Bill-of-Materials
 - Block diagrams
- **Format**
 - Web access
 - PDF and Excel files
 - High-resolution photos
- **Topics**
 - Consumer: Smartphones, smart home, wearables
 - Automotive: Infotainment, electrification, telematics
 - Telecom: Baseband unit, active antenna unit, CPE and others
- **220+ teardowns per year**
 - Daily updates

CUSTOM SERVICES
- **Insight**
 - Specific and dedicated projects
 - Strategic, financial, technical, supply chain, market and other semiconductor-related fields
 - Reverse costing and reverse engineering
- **Format**
 - PDF files with analyses
 - Excel files with graphics and data
- **Topics**
 - Photonics, Imaging & Sensing
 - Lighting & Displays
 - Power Electronics & Battery
 - Compound Semiconductors
 - Semiconductor Manufacturing and Packaging
 - Computing & Memory
- **190 custom projects per year**
YOLE GROUP’S MAJOR ACTIVITIES PER ENTITY

- Market, technology, and strategy consulting
- M&A and evaluation of companies
- Direct access to the analysts
- Characterization of electro-optical performances and risks
- Technology, process & cost analysis
- Teardown and reverse engineering
- Comparative analysis
- Specification, design and industrialization of systems
A WORLDWIDE PRESENCE

180+ collaborators in 9 different countries
A WIDE RANGE OF INFORMATION SOURCES

Our unique position allows us to obtain detailed and accurate information to meet your needs.

- 25 years in the semiconductor industry
- 5,000 players interviews per year
- 120+ annual conferences
- 1,250+ teardown tracks available
- 6,800+ companies’ news relayed
- 100+ analysts worldwide
A UNIQUE AND PROVEN METHODOLOGY

MARKETING EXCELLENCE AND BEST-IN-CLASS NETWORK

• Market segmentation
 ➢ Per application
 ➢ Per technical needs
 ➢ Per technology adoption and supply chain’s tendencies

• Primary research and direct interviews with key players

BOTTOM-UP, TOP-DOWN AND INDUSTRIAL EXPERTISE

• Top-down
 ➢ End market demand analysis
 ➢ Market forecasts at system and component levels down to wafer and equipment

• Bottom-up
 ➢ Ecosystem analysis
 ➢ Consolidate industrial players’ revenue at component, module and system levels

• Industrial experts in all our fields of investigation

STATE-OF-THE-ART TECHNOLOGY AWARENESS

• Technology analysis
 ➢ Competitive landscape and technology comparison
 ➢ Reverse costing
 ➢ Reverse engineering

• Technology life cycle
 ➢ Development cycles
 ➢ Supply chain adoption
 ➢ HV manufacturing and evolutions

• Performance testing and analysis

"Thanks to its unique semiconductor market intimacy, its understanding of the industrial environment and its vision on future technologies adoption, Yole Group supports its customers at every stage of their growth"
OUR NETWORK IS THE ENTIRE SUPPLY CHAIN ACROSS 6 MARKETS

6 KEY MARKETS

Mobile & Consumer Automotive & Mobility Telecom & Infrastructure Medical Defense & Aerospace Industrial

Academic/research Design & engineering Material & equipment Front-end manufacturing Back-end manufacturing OEMs & system integrator Consulting & finance
REPORTS, MONITORS & TRACKS

NORTH AMERICA
sales.us@yolegroup.com
+1 833 338 4999

EMEA
sales.emea@yolegroup.com
+49 69 9621 7675

JAPAN, KOREA, REST OF ASIA
sales.japan@yolegroup.com
sales.korea@yolegroup.com
sales.restofasia@yolegroup.com
+81 3 4405 9204

GREATER CHINA
sales.gc@yolegroup.com
+886 979 336 809 +86 136 6156 6824

FINANCIAL SERVICES
Jean-Christophe Eloy
eloy@yolegroup.com | +33 4 72 83 01 80

CUSTOM PROJECT SERVICES
Yole Intelligence
custom.yint@yolegroup.com | +33 6 27 68 69 33
Yole SystemPlus
custom.ysp@yolegroup.com | +33 2 72 17 89 85

GLOBAL OPERATIONS
Marketing & Sales
marketing@yolegroup.com | +81 80 8131 7837
Public Relations & External Communications
publicrelations@yolegroup.com | +33 6 33 11 61 55
communication@yolegroup.com
General Inquiries
contact@yolegroup.com | +33 4 72 83 01 80